

Ersatzlast

① DC-Schutzschalter für Batterie

SUN 5K-SG-EU: 150A DC-Schutzschalter
 SUN 6K-SG-EU: 200A DC-Schutzschalter
 SUN 8K-SG-EU: 250A DC-Schutzschalter
 SUN 10K-SG-EU: 300A DC-Schutzschalter
 SUN 12K-SG-EU: 300A DC-Schutzschalter

② AC-Schutzschalter für Ersatzlast SUN 5K-SG-EU: 16A AC-Schutzschalter SUN 6K-SG-EU: 16A AC-Schutzschalter SUN 8K-SG-EU: 20A AC-Schutzschalter SUN 10K-SG-EU: 32A AC- Schutzschalter SUN 12K-SG-EU: 32A AC-Schutzschalter

③ AC-Schutzschalter für das Netz SUN 5K-SG-EU: 63A AC-Schutzschalter SUN 6K-SG-EU: 63A AC-Schutzschalter SUN 8K-SG-EU: 63A AC-Schutzschalter SUN 10K-SG-EU: 63A AC-Schutzschalter SUN 12K-SG-EU: 63A AC-Schutzschalter

④ AC-Schutzschalter für Haushaltsgeräte Abhängig von den Haushaltslasten

3.11 Typisches Anwendungsdiagramm eines Dieselgenerators

SUN 6K-SG-EU: 200A DC-Schutzschalter SUN 8K-SG-EU: 250A DC-Schutzschalter SUN 10K-SG-EU: 300A DC-Schutzschalter SUN 12K-SG-EU: 300A DC-Schutzschalter

(2) AC-Schutzschalter für Ersatzlast

- SUN 5K-SG-EU: 16A AC-Schutzschalter
- SUN 6K-SG-EU: 16A AC- Schutzschalter
- SUN 8K-SG-EU: 20A AC-Schutzschalter SUN 10K-SG-EU: 32A AC- Schutzschalter
- SUN 12K-SG-EU: 32A AC- Schutzschalter
- (3) AC-Schutzschalter für den Generatoranschluss
- SUN 5K-SG-EU: 63A AC-Schutzschalter
- SUN 6K-SG-EU: 63A AC-Schutzschalter
- SUN 8K-SG-EU: 63A AC-Schutzschalter
- SUN 10K-SG-EU: 63A AC-Schutzschalter SUN 12K-SG-EU: 63A AC- Schutzschalter

3.12 Dreiphasenparallel-Schaltplan

4. BETRIEB

4.1 Strom EIN/AUS

Sobald das Gerät ordnungsgemäß installiert ist und die Batterien gut angeschlossen sind, drücken Sie einfach die Ein/Aus-Taste (auf der linken Seite des Gehäuses), um das Gerät einzuschalten. Wenn das System ohne angeschlossene Batterie, aber mit PV oder Netz verbunden ist und die EIN/AUS-Taste ausgeschaltet ist, leuchtet die LCD-Anzeige immer noch auf (auf dem Display wird AUS angezeigt). Wenn Sie in diesem Zustand die EIN/AUS-Taste einschalten und KEINE Batterie auswählen, kann das System immer noch funktionieren.

4.2 Bedien- und Anzeigefeld

Das Bedien- und Anzeigefeld, das in der folgenden Tabelle erläutert wird, befindet sich auf der Vorderseite des Wechselrichters. Es umfasst vier LED-Indikatoren, vier Funktionstasten und eine LCD-Anzeige, die den Betriebsstatus und die Eingangs-/Ausgangsleistungsinformationen anzeigt.

L	ED-Indikator	Meldungen
DC	Grüne LED leuchtet durchgehend	PV-Anschluss normal
AC	Grüne LED leuchtet durchgehend	Netzanschluss normal
Normal Grüne LED leuchtet durchgehend		Wechselrichterbetrieb normal
Alarm Rote LED leuchtet durchgehend		Störung oder Warnung

en
•

Funktionstaste	Beschreibung	
Esc	Zum Verlassen des Einstellmodus	
Auf	Zur vorherigen Auswahl gehen	
Ab	Zur nächsten Auswahl gehen	
Eingabe	Zum Bestätigen der Auswahl	

Tabelle 4-2 Funktionstasten

5. LCD Display Icons

5.1 Hauptbildschirm

Das LCD ist ein Touchscreen, der unterstehende Bildschirm zeigt die Gesamtinformationen des Wechselrichters.

- 1. Das Symbol in der Mitte des Startbildschirms zeigt an, dass sich das System im Normalbetrieb befindet. Wenn es sich in "comm./F01 F64" verwandelt, bedeutet dies, dass der Wechselrichter Kommunikationsfehler oder andere Fehler hat. Die Fehlermeldung wird unter diesem Symbol angezeigt (Fehler F01 F64, detaillierte Fehlerinformationen können im Menü System-Alarms eingesehen werden).
- 2. Am oberen Rand des Bildschirms wird die Uhrzeit angezeigt.
- 3. Symbol Systemeinstellung: Wenn Sie diese Taste drücken, gelangen Sie in den Bildschirm für die Systemeinstellung, der die Grundeinstellung, die Batterieeinstellung, die Netzeinstellung, den System-Arbeitsmodus, die Verwendung des Generatoranschlusses, die erweiterten Funktionen und die Li-Batt-Informationen enthält.
- 4. Der Hauptbildschirm zeigt die Informationen über Solar, Netz, Last und Batterie an. Er zeigt auch die Richtung des Energieflusses durch einen Pfeil an. Wenn die Leistung hoch ist, ändert sich die Farbe des Panels von grün auf rot, so dass die Systeminformationen auf dem Hauptbildschirm anschaulich dargestellt werden.
- \cdot PV-Strom und Laststrom sind immer positiv.
- · Netzstrom negativ bedeutet Verkauf an das Netz, positiv bedeutet Bezug vom Netz.
- · Batterieleistung negativ bedeutet Laden, positiv bedeutet Entladen.

5.1.1 LCD-Betriebsablaufplan

5.2 Solarstrom-Kurve

Batterie	
Entladung	
U:49.58V	
I:2.04A	
Leistung:101W	
Temp:25.0C	Energie

Dies ist die Detailseite der Batterie.

Wenn Sie eine Lithium-Batterie verwenden, können Sie die BMS-Seite aufrufen.

Li-BMS

Mittlere Spannung:50.3-	4V Charging Voltage :53.2V	
Gesamtstrom:55.00A	Entladespannung:47.0V	Ges
Mittlere Temperatur :	Ladestrom:50A	daten
	Entladestrom :25A	
Gesamt-SOC:38%		
		Details
		Daterr
Gesamtstrom:55.00A Mittlere Temperatur : 23.5C Gesamt-SOC:38% Dump-Energie:57Ah	Entladespannung:47.0V Ladestrom:50A Entladestrom :25A	Ges amt daten Details Daten

L	Li-BMS								
	Volt	Strom	Temp	soc	Energie	Auf	aden	Störu	ng
						Volt	Strom		\square
1	50.38V	19.70A	30.6C	52.0%	26.0Ah		0.0A	0 0 0	
2	50.33V	19.10A	31.0C	51.0%	25.5Ah	53.2V	25.0A		Gora
3	50.30V	16.90A	30.2C	12.0%	6.0Ah	53.2V	25.0A		Gesa
4		0.00A		0.0%	0.0Ah				mtda
5	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V			ten
6		0.00A			0.0Ah			0000	
7									\equiv
8									
9									
10									Details
11									Daten
12									
13									
14									
15									

5.3 Kurvenseite - Solar & Last & Netz

Solarstromkurve für Tag, Monat, Jahr und Gesamt kann grob auf dem LCD überprüft werden, für mehr Genauigkeit der Stromerzeugung überprüfen Sie bitte auf dem Überwachungssystem. Klicken Sie auf den Auf- und Ab-Pfeil, um die Leistungskurve für verschiedene Zeiträume aufzurufen.

5.4 Menü "Systemeinstellung"

Systemeins	stellung	Dies ist die Seite für die Systemeinstellungen
Batterie System-Arbeitsmodus		
einstellu ng	Netzeinstellung Verwendung des Generatoranschlusses	
Grund einstellung	Erweiterte Funktion Geräte-Info.	

5.5 Menü "Grundeinstellung"

Werksrückstellung: Alle Parameter des Wechselrichters zurücksetzen.

Sperrung aller Änderungen: Aktivieren Sie diese Option, um Parameter vor Änderungen zu schützen. Vor der erfolgreichen Werksrückstellung und Systemsperre müssen Sie ein Passwort eingeben, damit alle Änderungen erhalten bleiben.

Das Passwort für die Werksrückstellung ist 9999 und für die Sperrung ist 7777.

5.6 Menü "Batterieeinstellung"

Batteriekapazität: Hierdurch erfährt der Deye Hybrid-Wechselrichter die Größe Ihrer Batteriebank.

Batt V verwenden: Verwende die Batteriespannung für alle Einstellungen (V).

Batt % verwenden: Verwende den Batterie-SOC für alle Einstellungen (%).

Max. A Laden/Entladen: Max. Batterielade-/Entladestrom (0-115A für das 5KW-Modell, 0-90A für das 3,6KW-Modell). Für AGM und Flutbatterien empfehlen wir Ah Batteriegröße x 20% = Lade-/Entladestrom.

. Für Lithium empfehlen wir Ah Batteriegröße x 50% = Lade-/Entladestrom.

. Für Gel, folgen Sie den Anweisungen des Herstellers.

No Batt: Wähle diese Option, wenn keine Batterie an das System angeschlossen ist.

Aktivate Batterie: Diese Funktion hilft bei der Wiederherstellung einer zu stark entladenen Batterie durch langsames Aufladen von der der Solaranlage oder vom Netz.

Dies ist Netzladung, die Sie wählen müssen. (2)

Start =30%: Keine Verwendung, nur zur Anpassung.
A = 40A: Zeigt den Strom an, mit dem das Netz die Batterie l\u00e4dt.

Netzladung: Zeigt an, dass das Netz die Batterie auflädt.

Netzsignal: Deaktivieren.

Dies ist die Seite für die Batterieeinstellung. 13

Start =30%: Prozentualer S.O.C. bei 30% wird das System einen angeschlossenen Generator automatisch starten, um die Batteriebank zu laden.

A = 40A: Auflade-Rate von 40A vom angeschlossenen Generator in Ampere.

Gen-Aufladung: verwendet den Generatoreingang des Systems, um die Batteriebank von einem angeschlossenen Generator zu laden.

Gen-Signal: Normalerweise offenes Relais, das sich schließt, wenn das Gen Start Signalzustand aktiv ist.

Gen Max Laufzeit: zeigt die längste Zeit an, die der Generator an einem Tag laufen kann, danach wird er abgeschaltet. 24H bedeutet, dass er sich die ganze Zeit nicht ausgeschaltet.

Gen-Auszeit: Gibt die Verzögerungszeit an, mit der der Generator nach Erreichen der Betriebszeit abgeschaltet wird.

Auf dieser Seite erfahren Sie, wie die PV-Anlage und der Dieselgenerator die Last und die Batterie versorgen.

Ocherator		
Strom: 6000W	Heute=10 KWH Gesamt =10 KWH	Diese Seite gibt Auskunft über die Ausgangs-spannung, Frequenz und Leistung des Generators. Und, wie viel Energie vom Generator verbraucht wird.
V_L1: 230V V_L2: 230V V_L3: 230V	P_L1: 2KW P_L2: 2KW P_L3: 2KW	

Lithium-Modus: Es ist ein BMS-Protokoll, siehe Dokument (Zugelassene Batterie).

Abschaltung 10%: Zeigt an, dass sich der Wechselrichter abschaltet, wenn der SOC unter diesem Wert liegt. Batterie schwach 20%: Zeigt an, dass der Wechsel-richter einen Alarm auslöst, wenn der SOC-Wert unter diesem Wert liegt.

Wiederaufnahme 40%: Batteriespannung bei 40% AC-Ausgang wird wieder aufgenommen.

(1)

(2)

(3)

Empfohlene Batterieeinstellungen

Batterie-Typ	Absorptionsstufe	Erhaltungsstufe	Torque-Wert (alle 30 Tage 3 Std.)		
AGM (oder PCC)	14.2v (57.6v)	13.4v (53.6v)	14.2v(57.6v)		
Gel	14.1v (56.4v)	13.5v (54.0v)			
Nass	14.7v (59.0v)	13.7v (55.0v)	14.7v(59.0v)		
Lithium	Folge seinen BMS-Spannungsparametern				

5.7 Menü "System-Arbeitsmodus-Einstellung"

Arbeitsmodus

Verkauf zuerst: In diesem Modus kann der Hybrid-Wechselrichter überschüssigen Strom, der von den Solarmodulen erzeugt wird, an das Netz zurück-verkaufen. Wenn die Nutzungszeit aktiv ist, kann auch die Batterieenergie ins Netz verkauft werden.

Die PV-Energie wird zur Versorgung der Last und zum Aufladen der Batterie verwendet, und die überschüssige Energie fließt dann ins Netz.

Die Priorität der Stromquelle für die Last ist wie folgt: 1.Solarmodule.2. Netz.3. Batterien (bis zum Erreichen der programmier-baren %-Entladung).

Null-Export zur Last: Der Hybrid-Wechselrichter versorgt nur die angeschlossene Ersatzlast mit Strom. Der Hybrid Wechselrichter liefert weder Strom an die Hauslast noch verkauft er Strom an das Netz. Der eingebaute Stromwandler erkennt Strom, der ins Netz zurückfließt, und reduziert die Leistung des Wechselrichters nur, um die lokale Last zu versorgen und die Batterie zu laden.

Null-Export an CT: Der Hybrid-Wechselrichter versorgt nicht nur die angeschlossene Ersatzlast, sondern auch die angeschlossene Haushaltslast mit Strom. Wenn die PV-Leistung und die Batterieleistung nicht ausreichen, wird die Energie des Netzes als Ergänzung genutzt. Der Hybrid-Wechselrichter gibt keinen Strom an das Netz ab. In diesem Modus wird ein Stromwandler benötigt. Die Installationsweise des Stromwandlers entnehmen Sie bitte dem Kapitel 3.6 Stromwandler (CT)-Anschluss. Der externe Stromwandler erkennt, wenn Strom ins Netz zurückfließt, und reduziert die Leistung des Wechselrichters nur, um die lokale Last zu versorgen, die Batterie zu laden und die Haushaltslast zu bedienen.

Solar-Verkauf: "Solar-Verkauf" ist für Null-Export an die Last oder Null-Export an CT: Wenn dieses Element aktiv ist, kann die überschüssige Energie zurück ins Netz verkauft werden. Wenn diese Option aktiviert ist, wird die PV-Stromquelle vorrangig wie folgt genutzt: Verbrauch unter Last, Aufladen der Batterie und Einspeisung ins Netz.

Max. Stromverkauf: Erlaubt die maximale Ausgangsleistung, die ins Netz fließt.

Null-Export Strom: für den Null-Export Modus gibt es die Ausgangsleistung des Netzes an. Es wird empfohlen, diesen Wert auf 20-100W einzustellen, um sicherzustellen, dass der Hybrid-Wechselrichter keine Leistung ins Netz einspeist.

Energie-Muster: Priorität der PV-Energiequelle.

Batt Zuerst: Die PV-Leistung wird zuerst zum Aufladen der Batterie und dann zur Versorgung der Verbraucher verwendet. Wenn die PV-Leistung nicht ausreicht, wird das Netz gleichzeitig die Batterie und die Last versorgen. Last Zuerst: Der PV-Strom wird zuerst zur Versorgung der Last und dann zum Aufladen der Batterie verwendet. Wenn die PV-Leistung nicht ausreicht, versorgt das Netz die Last mit Strom.

Max Solarstrom: erlaubt die maximale DC-Eingangsleistung.

Netz-Spitzenlastabbau: Wenn diese Funktion aktiviert ist, wird die Ausgangsleistung des Netzes auf den eingestellten Wert begrenzt. Wenn die Lastleistung den zulässigen Wert überschreitet, werden PV-Energie und Batterie als Ergänzung verwendet. Wenn die Lastanforderungen immer noch nicht erfüllt werden können, wird die Netzleistung erhöht, um die Lastanforderungen zu erfüllen.

System-Arbeitsmodus						
Netzladung	Gen	2	<mark>/</mark> Nutzi Leit	ungszeit Leistung	Batt	Work
		01:00	5:00	12000	49.0V	Mode2
		05:00	9:00	12000	50.2V	
		09:00	13:00	12000	50.9V	
		13:00	17:00	12000	51.4V	
		17:00	21:00	12000	47.1V	
		21:00	01:00	12000	49.0V	

System-Arbeitsmodus Netz Vutzungsdauer Aufladen Gen Zeit Leistung Batt Betriel 01:00 5:00 12000 80% /Indus' 05:00 12000 40% 8:00 08:00 10:00 12000 40% 10:00 15:00 12000 100% 15:00 18:00 12000 40% 18:00 01:00 12000 35%

Nutzungszelt: Hier wird programmiert, wann das Netz oder der Generator zum Laden der Batterie verwendet wird und wann die Batterie entladen wird, um die Last zu versorgen. Klicken Sie nur auf "Nutzungszeit", dann werden die folgenden Punkte (Netz, Aufladung, Zeit, Leistung usw.) wirksam.

Hinweis: Wenn Sie sich im "Verkauf zuerst"-Modus befinden und auf "Nutzungszeit" klicken, kann der Batteriestrom ins Netz eingespeist werden.

Netzladung: Nutzen Sie das Netz, um die Batterie in einem bestimmten Zeitraum zu aufzuladen

Generatorladung: Nutzung des Dieselgenerators zum Aufladen der Batterie innerhalb eines bestimmten Zeitraums.

Zeit: Echtzeit, Bereich von 01:00-24:00.

Hinweis: bei vorhandenem Netz ist nur die "Nutzungszeit" angekreuzt, entlädt sich der Akku. Sonst entlädt sich die Batterie nicht, selbst wenn der Batterie-SOC voll istl. Aber im Off-Grid-Modus (wenn kein Netz vorhanden ist) arbeitet der Wechselrichter im Off-Grid-Modus automatisch.

Leistung: Max. zulässige Entladeleistung der Batterie.

Batt(V oder SOC %): SOC % der Batterie oder Spannung, bei der die Aktion stattfinden soll.

Zum Beispiel:

Wenn der SOC-Wert der Batterie zwischen 01:00 und 05:00 Uhr unter 80 % liegt, wird die Batterie über das Netz geladen, bis der SOC-Wert der Batterie 80 % erreicht.

Zwischen 05:00-08:00 und 08:00-10:00, wenn der SOC der Batterie höher als 40% ist, entlädt der Hybrid-Wechselrichter die Batterie, bis der SOC 40% erreicht.

Wenn der SOC-Wert der Batterie zwischen 10:00 und 15:00 Uhr über 80 % liegt, entlädt der Hybrid-Wechselrichter die Batterie, bis der SOC-Wert 80 % erreicht.

Wenn der SOC-Wert der Batterie zwischen 15:00 und 18:00 Uhr über 40 % liegt, entlädt der Hybrid-Wechselrichter die Batterie, bis der SOC-Wert 40 % erreicht.

Wenn der SOC-Wert der Batterie zwischen 18:00 und 01:00 Uhr höher als 35 % ist, entlädt der Hybrid-Wechselrichter die Batterie, bis der SOC-Wert 35 % erreicht hat.

5.8 Netz Konfiguration Menü

Netzmodus: Allgemeiner Standard, UL1741 und IEEE1547, allgemeiner Standard CPUC RULE21, SRD-UL-1741, CEI 0-21, Australien A, Australien B, Australien C, EN50549_CZ-PPDS(>16A), Neuseeland, VDE4105, OVE-Richtlinie R25. Bitte folgen Sie den örtlichen Netzvorschriften und wählen Sie dann den entsprechenden Netzstandard aus. Netzebene: Es gibt mehrere Spannungsebenen für die Ausgangsspannung des Wechselrichters im Off-Grid-Modus. LN:230VAC LL:400VAC,LN:240VAC LL:420VAC, LN:120VAC LL:208VAC, LN:133VAC LL:230VAC.

IT-System: Für das IT-Netzsystem beträgt die Netzspannung

(zwischen zwei beliebigen Leitungen in einem dreiphasigen Stromkreis) 230 VAC, und das Diagramm sieht wie folgt aus. Wenn Ihr Netzsystem ein IT-System ist, aktivieren Sie bitte "IT-System" und kreuzen Sie es an die "Gitterebene" als 133-3P, wie das Bild unten zeigt.

Rz: Erdungswiderstand mit großem Widerstand. Oder das System hat keine neutrale Leitung

Normale Verbindung: Der zulässige Netzspannungs-/ Frequenzbereich, wenn der Wechselrichter zum ersten Mal mit dem Netz verbunden wird. Wiedereinschalten nach Auslösung: Der zulässige

Netzspannung- /Frequenzbereich für den Wechselrichter beim Wiedereinschalten nach der Abtrennung vom Netz. Wiederverbindungszeit: die Wartezeit, in der der Wechselrichter sich wieder mit dem Netz verbindet. PF: Leistungsfaktor, der verwendet wird, um die Blindleistung des Wechselrichters anzupassen

HV1: Überspannungsschutz Stufe 1; 1)HV2: Überspannungsschutz Stufe 2; (2) 0.10s—Ausfallzeit. HV3: Überspannungsschutz Stufe 3. LV1: Unterspannungsschutz Stufe 1; LV2: Unterspannungsschutz Stufe 2; LV3: Unterspannungsschutz Stufe 3. HF1: Überfrequenzschutz der Stufe 1; HF2: Überfrequenzschutz der Stufe 2; HF3: Überfrequenzschutz der Stufe 3. LF1: Stufe 1 unter Frequenzschutz: LF2: Stufe 2 unter Frequenzschutz; LF3: Stufe 3 unter Frequenzschutz.

Netzeinstellung/F(W)				
	F(W)			
Überfrequenz		Droop F	40%P/Hz	Grid
Startfreq F	50.20Hz	Stoppfreq F	51.5Hz	Set4
Start Verzö. F	0.00s	Stop Verzö. F	0.00s	
Unterfrequenz		Droop F	40%PE/Hz	
Startfreq F	49.80Hz	Stoppfreq F	49.80Hz	
Start Verzö. F	0.00s		0.00s	

FW: Dieser Wechselrichter kann die Ausgangsleistung an die Netzfrequenz anpassen.

Droop F: Prozentsatz der Nennleistung pro Hz Beispiel: "Startfrequenz F>50,2 Hz, Stoppfrequenz F< 51,5, Droop F=40 % P/Hz", wenn die Netzfrequenz 50,2 Hz erreicht, verringert der Wechselrichter seine Wirkleistung bei Droop F von 40 %. Und wenn die Netzsystemfrequenz dann weniger als 50,1 Hz beträgt, hört der Wechselrichter auf, die Ausgangsleistung zu verringern.

Befolgen Sie bitte für die detaillierten Einrichtungswerte die örtlichen Netzvorschriften.

V(W): Wird verwendet, um die aktive Leistung des Wechselrichters entsprechend der eingestellten Netzspannung anzupassen.

V(Q): Wird verwendet, um die Blindleistung des Wechselrichters entsprechend der eingestellten Netzspannung anzupassen.

Diese Funktion wird verwendet, um die Ausgangsleistung des Wechselrichters (Wirkleistung und Blindleistung) anzupassen, wenn sich die Netzspannung ändert.

Beispiel: V2=110 %, P2=80 %. Wenn die Netzspannung das 110 %-fache der Netznennspannung erreicht, reduziert die Ausgangsleistung des Wechselrichters seine aktive Ausgangsleistung auf 80 % der Nennleistung.

Beispiel: V1=94 %, Q1=44 %. Wenn die Netzspannung das 94 %-fache der Netznennspannung erreicht, gibt die Ausgangsleistung des Wechselrichters 44 % Blindausgangsleistung aus.

Befolgen Sie bitte für die detaillierten Einrichtungswerte die örtlichen Netzvorschriften.

P(Q): Wird verwendet, um die Blindleistung des Wechselrichters entsprechend der eingestellten Wirkleistung anzupassen.

P(PF): Wird verwendet, um den Leistungsfaktor des Wechselrichters entsprechend der eingestellten Wirkleistung einzustellen.

Befolgen Sie bitte für die detaillierten Einrichtungswerte die örtlichen Netzvorschriften.

Reserviert: Diese Funktion ist reserviert. Sie wird nicht empfohlen.

5.9 Menü "Verwendung des Generatoranschlusses"

Nennleistung des Generator-Eingangs: zulässige maximale Leistung des Dieselgenerators.

GEN-Anschluss an Netzeingang: Schließen Sie den Dieselgenerator an den Netzeingangs-Anschluss an.

Intelligent-Last Ausgang: In diesem Modus wird der Generator-Eingangsanschluss als Ausgang verwendet, der nur dann Strom erhält, wenn der Batterie-SOC und die PV-Leistung über einem vom Benutzer programmierbaren Schwellenwert liegen.

z.B. ON: 100%, AUS=95%: Wenn die PV-Leistung 500 W übersteigt und der SOC der Batteriebank 100 % erreicht, schaltet sich der Intelligent-Last-Anschluss automatisch ein und versorgt die angeschlossene Last mit Strom. Wenn der SOC der Batteriebank < 95% ist, schaltet sich der Intelligent-Last-Anschluss automatisch aus.

Intelligent-Last-AUS Batt

•Batterie-SOC, bei dem sich die Intelligent-Last ausschaltet. Intelligent-Last-EIN Batt

* Mikro-Inv-Eingang AUS: Wenn der Batterie-SOC den eingestellten Wert überschreitet, schaltet sich der Mikro-Wechselrichter oder der netzgekoppelte Wechselrichter ab.

* Mikro-Inv-Eingang EIN: Wenn der SOC-Wert der Batterie unter dem eingestellten Wert liegt, wird der Mikro-Wechselrichter oder der netzgekoppelte Wechselrichter in Betrieb genommen.

Ex_Zähler für CT: Bei Verwendung des "Null-Export an CT"-Modus kann der Hybrid-Wechselrichter die Funktion " EX_Zähler für CT" wählen und verschiedene Zähler verwenden, z. B. CHNT und Eastron.

5.11 Geräteinfo Konfiguration Menü

6. Modus Modus I: Grundversion

Modus II: Mit Generator

Modus III: Mit Intelligent-Last

Modus IV: AC Kopplung

Die erste Priorität des Systems ist immer die PV-Leistung, die zweite und dritte Priorität ist die Batteriebank oder das Netz, je nach den Einstellungen. Die letzte Reserve-Stromquelle ist der Generator, wenn er verfügbar ist.

7. Haftungsbeschränkung

Zusätzlich zu der oben beschriebenen Produktgarantie sehen die nationalen und regionalen Gesetze und Vorschriften eine finanzielle Entschädigung für den Stromanschluss des Produkts vor (einschließlich der Nichterfüllung von implizierten Bedingungen und Garantien). Das Unternehmen erklärt hiermit, dass die Produktbedingungen und die Police nur in einem begrenzten Umfang rechtlich haften können und dürfen.

Fehlercode	Beschreibung	Lösungen
F01	DC-Eingangs-Polaritätsumkehr -Fehler	 Prüfe die PV-Eingangspolarität Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F07	DC_START_Fehler	 Die BUS-Spannung kann nicht von PV oder Batterie aufgebaut werden. Neustart des Wechselrichters, wenn der Fehler weiter besteht, bitte kontaktiere uns für Hilfe.
F13	Arbeitsmodus ändern	 Wenn sich der Netztyp und die Frequenz geändert haben, wird F13 gemeldet; Wenn der Batteriemodus in den Modus "Keine Batterie" geändert wurde, meldet er F13; Bei einigen alten FW-Versionen meldet es F13, wenn sich der Arbeitsmodus des Systems ändert; Im Allgemeinen verschwindet es automatisch, wenn es F13 anzeigt; Wenn weiter besteht, schalte den DC-Schalter und den AC-Schalter aus, warte eine Minute und schalte dann den DC/AC-Schalter wieder ein; Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F15	AC-Überstromfehler der Software	 AC-seitiger Überstromfehler 1. Prüfe, ob die Leistung der Ersatzlast und der gemeinsamen Lastleistung innerhalb des Bereichs liegen; 2. Starte das Gerät neu und prüfe, ob es sich im Normalzustand befindet; 3. Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F16	AC-Ableitstromfehler	Fehler durch Ableitstrom 1. Prüfe den Erdungsanschluss des PV-Kabels 2. Starte das System 2-3 Mal neu. 3. Wenn der Fehler weiter besteht, kontaktiere uns für Hilfe.
F18	AC-Überstromfehler der Hardware	 AC-seitiger Überstromfehler Prüfe, ob die Ersatzlastleistung und die gemeinsame Lastleistung innerhalb des Bereichs liegen; Starte das Gerät neu und prüfe, ob es sich im Normal-Zustand befindet; Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F20	DC-Überstromfehler der Hardware	 DC-seitiger Überstromfehler Prüfe den Anschluss des PV-Moduls und der Batterie; Wenn der Wechselrichter im Insel-Modus mit einer großen Last gestartet wird, kann er F20 melden. Bitte reduziere die angeschlossene Last; Schalte den DC- und den AC-Schalter aus und warten Sie eine Minute, und schalte dann den DC/AC-Schalter wieder ein; Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.

Fehlercode	Beschreibung	Lösungen
F21	Tz_HV_Überstrom_Fehler	 BUS-Überstrom. 1. Prüfe den PV-Eingangsstrom und die Batteriestrom-Einstellung 2. Starte das System 2-3 Mal neu. 3. Wenn der Fehler weiter besteht, kontaktiere uns für Hilfe.
F22	Tz_Notstopp_Fehler	Ferngesteuerte Abschaltung 1. zeigt an, dass der Wechselrichter ferngesteuert wird.
F23	Tz_GFCI_OC_ Strom ist kurzzeitiger Überstrom.	Fehler durch Ableitstrom 1. Prüfe Erdungsanschluss des PV-seitigen Kabels. 2. Starte das System 2-3 Mal neu. 3. Wenn der Fehler weiter besteht, kontaktiere uns für Hilfe.
F24	Ausfall der DC-Isolierung	 PV-Isolationswiderstand ist zu niedrig Prüfe, ob die Verbindung von PV-Paneelen und Wechselrichter fest und korrekt ist; Prüfe, ob das PE-Kabel des Wechselrichters mit der Erde verbunden; Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F26	Die DC-Sammelschiene ist unbalanciert.	 Bitte warte eine Weile und prüfe, ob es normal ist; Wenn die Lastleistung der 3 Phasen sehr unterschiedlich ist, wird F26 angezeigt. Wenn es einen DC-Leckstrom gibt, wird F26 gemeldet Starte das System 2-3 Mal neu. Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F48	AC Unterfrequenz	 Netzfrequenz außerhalb des Bereichs 1. Prüfe, ob die Frequenz im Bereich der Spezifikation liegt; 2. Prüfe, ob die AC-Kabel fest und korrekt angeschlossen sind; 3. Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F29	Paralleler CAN-Bus-Fehler	 Überprüfe im Parallel-Modus den Anschluss des parallelen Kommunikationskabels und die Einstellung der Kommunikationsadresse des Hybrid-Wechselrichters; Während der Startphase des Parallelsystems melden die Wechselrichter F29, aber wenn alle Wechselrichter einge-schaltet sind, verschwindet diese Meldung automatisch; Wenn der Fehler weiter besteht, kontaktiere uns für Hilfe.
F34	AC-Überstromfehler	 Überprüfe die angeschlossene Ersatzlast und achte darauf, dass sie im zulässigen Leistungsbereich liegt. Wenn der Fehler weiter besteht, kontaktiere uns für Hilfe.
F41	Paralleles System stoppen	 Prüfe den Arbeitsstatus des Hybrid-Wechselrichters. Wenn 1 Stk. Hybrid-Wechselrichter abgeschaltet, melden alle Hybrid-Wechselrichter den Fehler F41. Wenn der Fehler weiter besteht, kontaktiere uns für Hilfe.
F42	AC-Netz Unterspannung	 Fehler in der Netzspannung Prüfe, ob die Wechselspannung im Bereich der Standard-spannung der Spezifikation liegt; Prüfe, ob die AC-Netzkabel fest/korrekt angeschlossen sind; Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.

Fehlercode	Beschreibung	Lösungen
F46	Störung der Reservebatterie	 Bitte überprüfe jeden Batteriestatus, wie Spannung/SOC und Parameter usw., und stelle sicher, dass alle Parameter gleich sind. Wenn der Fehler weiter besteht, kontaktiere uns für Hilfe.
F47	AC Überfrequenz	 Netzfrequenz außerhalb des Bereichs 1. Prüfe, ob die Frequenz im Bereich der Spezifikation liegt; 2. Prüfe, ob die AC-Kabel fest/korrekt angeschlossen sind; 3. Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F48	AC Unterfrequenz	 Netzfrequenz außerhalb des Bereichs 1. Prüfe, ob die Frequenz im Bereich der Spezifikation liegt; 2. Prüfe, ob die AC-Kabel fest/korrekt angeschlossen sind; 3. Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F55	Spannung der DC-Sammelschiene ist zu hoch	 BUS-Spannung ist zu hoch Prüfe, ob die Batteriespannung zu hoch ist; Prüfe die PV-Eingangsspannung und stelle sicher, dass sie innerhalb des zulässigen Bereichs liegt; Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F56	Spannung der DC-Sammelschiene ist zu niedrig	 Batteriespannung niedrig Prüfe, ob die Batteriespannung zu niedrig ist; Wenn die Batteriespannung zu niedrig ist, lade die Batterie mit Hilfe der PV oder des Netzes auf; Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F58	BMS-Kommunikationsfehler	 Die ARC-Fehlererkennung gilt nur für den US-Markt; Überprüfe die Kabelverbindung des PV-Moduls und behebe den Fehler; Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F62	DRMs0_stopp	 Die DRM-Funktion ist nur für den australischen Markt bestimmt. Prüfe, ob die DRM-Funktion aktiv ist oder nicht. Bitte kontaktiere uns, wenn es nach System-Neustart nicht in den Normalzustand zurückkehrt.
F34	AC Überstrom-Fehler	 Überprüfe die angeschlossene Ersatzlast, stelle sicher, dass sie im zulässigen Leistungsbereich liegt. Wenn der Fehler weiter besteht, kontaktiere uns für Hilfe
F63	ARC Fehler	 Die ARC-Fehlererkennung gilt nur für den US-Markt; Überprüfe die Kabelverbindung des PV-Moduls und behebe den Fehler; Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.
F64	Kühlkörpers Übertemperatur-Fehler	Die Temperatur des Kühlkörpers ist zu hoch 1. Prüfe, ob die Temperatur der Arbeitsumgebung zu hoch ist; 2. Schalte den Wechselrichter für 10 Minuten aus und starten ihn erneut; 3. Bitte kontaktiere uns, wenn es nicht in den normalen Zustand zurückbringen läßt.

Tabelle 7-1 Fehlerinformation

Unter unserer Anleitung senden die Kunden unsere Produkte zurück, damit wir einen Wartungs- oder Ersatz-service für gleichwertige Produkte anbieten können. Die Kunden müssen die notwendigen Frachtkosten und andere damit verbundene Kosten tragen. Jeder Ersatz oder jede Reparatur des Produkts deckt die verbleibende Garantiezeit des Produkts ab. Wird ein Teil des Produkts oder eine Komponente während der Garantiezeit durch uns ersetzt, gehen alle Rechte und Interessen an dem Ersatzprodukt oder der Komponente auf uns über.

Die Werksgarantie gilt nicht für Schäden, die auf folgende Gründe zurückzuführen sind:

- ·Schäden beim Transport der Ausrüstung
- •Schäden durch unsachgemäße Installation oder Inbetriebnahme
- •Schäden durch Nichtbeachtung von Betriebs-, Installations- oder Wartungsanweisungen
- •Schäden durch den Versuch, Produkte zu modifizieren, zu verändern oder zu reparieren
- •Schäden durch unsachgemäßen Gebrauch oder Betrieb
- •Schäden durch unzureichende Belüftung der Geräte
- •Schäden durch die Nichteinhaltung geltender Sicherheitsstandards oder -vorschriften
- •Schäden durch Naturkatastrophen oder höhere Gewalt (z. B. Überschwemmungen, Blitzschlag, Überspannung, Stürme, Brände usw.)

Darüber hinaus beeinträchtigen normaler Verschleiß oder andere Fehler die grundlegende Funktionsweise des Produkts nicht. Äußere Kratzer, Flecken oder natürliche mechanische Abnutzung stellen keinen Mangel des Produkts dar.

8. Datenblatt

Modell	SUN-5K-	SUN-6K-	SUN-8K- SG04LP3-FU	SUN-10K- SG04LP3-EU	SUN-12K- SG04LP3-EU	
Batterie Eingangsdaten	0001110100					
Batterie-Typ		Blei-Säure oder Li-lon				
Batteriespannungsbereich (V)			40-60V			
Max. Ladestrom (A)	120A	150A	190A	210A	240A	
Max. Entladestrom (A)	120A	150A	190A	210A	240A	
Ladekurve		3 Stufen / Ausgleichsladung				
Externer Temperatursensor			Ja			
Ladestrategie für Li-Ion-Batterie		Se	lbst-Adaption a	in BMS		
PV-Strang Eingangsdaten						
Max. DC-Eingangsleistung (W)	6500W	7800W	10400W	13000W	15600W	
PV-Eingangsspannung (V)	550V (160V~800V)					
MPPT-Bereich (V)			200V-650V			
Start-up Spannung (V)			160V			
PV-Eingangsstrom (A)	13A+13A	13A+13A	13A+13A	26A+13A	26A+13A	
Max.PV ISC (A)	17A+17A	17A+17A	17A+17A	34A+17A	34A+17A	
Anzahl der MPPT-Tracker			2			
Anzahl der Stränge pro MPPT-Tracker	1+1	1+1	1+1	2+1	2+1	
AC Ausgangsdaten						
AC-Nennleistung und USV-Leistung (W)	5000	6000	8000	10000	12000	
Max. AC-Ausgangsleistung (W)	5500	6600	8800	11000	13200	
Spitzenleistung (ohne Netz)		2-fach	e Nennleistung	g, 10 S		
AC-Ausgangsnennstrom (A)	7,6/7,2A	9,1/8,7A	12,1/11,6A	15,2/14,5A	18,2/17,4A	
Max. AC-Strom (A)	11,4/10,9A	13,6/13A	18,2/17,4A	22,7/21,7A	27,3/26,1A	
Max. kontinuierlicher AC-Durchlass (A)	45A					
Ausgangsfrequenz und -spannung	50/60Hz; 380/400V AC (dreiphasig)					
Netz-Typ	Dreiphasig					
Stromklirrfaktor	THD<3% (Lineare Last<1,5%)					
Wirkungsgrad						
Max. Wirkungsgrad			97.60%			
Euro-Wirkungsgrad	97.00%					
MPPT-Wirkungsgrad			>99%			
Schutz						
PV-Lichtbogenfehler-Erkennung	Integriert					
PV-Eingangs-Blitzschutz	Integriert					
Anti-Inseln-Schutz	Integriert					
Verpolungsschutz für PV-String-Eingang	Integriert					
Erkennung von Isolationswiderständen	Integriert					
Fehlerstrom-Überwachungseinheit	Integriert					
Ausgang Überstromschutz			Integriert			
Kurzschlussschutz am Ausgang			Integriert			
Ausgang Überspannungsschutz		DC	Typ II / AC Typ	111		

Zertifizierungen und Standards		
Netzrogulierung	CEI 0-21,VDE-AR-N 4105,NRS 097,IEC 62116,IEC 61727,G99,G98,	
Netzregulierung	VDE 0126-1-1,RD 1699,C10-11	
Sicherheitsvorschriften	IEC/EN 62109-1,IEC/EN 62109-2,IEC/EN 61000-6-1,	
EMV	IEC/EN 61000-6-2,IEC/EN 61000-6-3,IEC/EN 61000-6-4	
Allgemeine Daten		
Betriebstemperaturbereich (°C)	-4-60°C, >45°C Leistungsminderung	
Kühlung	Intelligente Kühlung	
Geräusch (dB)	<45 dB	
Kommunikation mit BMS	RS485; CAN	
Gewicht (kg)	33.6	
Größe (mm)	422B×699,3H×279T	
Schutzart	IP65	
Installationsart	Wandmontage	
Garantie	5 Jahre	

9. Anhang I

Definition des RJ45-Anschlusspins für BMS

Nr	RS485 Pin
1	485_B
2	485_A
3	
4	CAN-H
5	CAN-L
6	GND_485
7	485_A
8	485_B

Definition des RJ45-Anschlusspins für Messgerät-485

Nr	Pin des Messgerät-485
1	ZÄHLER-485_B
2	ZÄHLER-485_A
3	COM-GND
4	
5	
6	COM-GND
7	ZÄHLER-485_A
8	ZÄHLER-485_B

Definition des RJ45-Anschlusspins für "Modbus-Anschluss" für die Fernüberwachung

No.	Modbus-Anschluss
1	485_B
2	485_A
3	GND_485
4	
5	
6	GND_485
7	485_A
8	485_B

Hinweis: Für einige Hardwareversionen ist dieser Port nutzlos.

46

Messgerät-485-Anschluss

Modbus-Anschluss 485

12345678

BMS-Anschluss

U

RS232

No.	WIFI/RS232
1	
2	TX
3	RX
4	
5	D-GND
6	
7	
8	
9	12Vdc

Dieser RS232-Anschluss wird verwendet, um den WLAN-Datenlogger anzuschließen

10. Anhang II

- 1. Abmessungen des Stromwandlers (CT) mit geteiltem Kern: (mm)
- 2. Die Länge des sekundären Ausgangskabels beträgt 4m.

NINGBO DEYE INVERTER TECHNOLOGY CO., LTD.

Add: No.26-30, South Yongjiang Road, Beilun, 315806, Ningbo, China Tel: +86 (0) 574 8622 8957 Fax: +86 (0) 574 8622 8852 E-mail: service@deye.com.cn Web: www.deyeinverter.com 30240301000367 Ver: 2.2, 2022-08-18